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The Complexity of Standing 
Postural Sway Associates with 
Future Falls in Community-Dwelling 
Older Adults: The MOBILIZE Boston 
Study
Junhong Zhou1,2,3, Daniel Habtemariam1, Ikechukwu Iloputaife1, Lewis A. Lipsitz1,2,3 & Brad 
Manor1,2,3

Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting 
across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been 
linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural 
sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed 
the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task 
standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls 
were subsequently tracked for 48 months. Negative binomial regression demonstrated that older 
adults with lower postural sway complexity in both single and dual-task conditions had higher future 
fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96–0.99). Notably, 
participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls 
during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% 
CL = 1.09–1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate 
with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained 
within standing postural sway-particularly during dual task conditions- appears to be a better predictor 
of future falls in older adults.

Older adults commonly fall due to loss of balance when standing1. The task of standing is most often completed 
as part of a “dual task;” that is, standing while simultaneously performing additional cognitive tasks such as 
talking, reading or making decisions in daily life1. Such dual tasking often interferes with performance in one or 
both tasks, especially in older adults2. Numerous attempts have thus been made to identify fall risk by measuring 
one’s ability to regulate the movement of their body’s center of mass (i.e., postural sway) with respect to its base 
of support, under both normal and dual task conditions3. Older adults with a history of falls tend to have larger 
and faster postural sway when standing in either of these conditions, as compared to those who have not fallen in 
the past4. However, such traditional characterizations of postural sway, which tend to characterize sway motion 
or structure at a single temporal or spatial scale (e.g., average sway speed or area) do not sensitively predict those 
older adults who are more likely to fall in the future5–7. For example, in a study of 100 older adults reported by 
Maki et al.7, baseline spatial characteristics of postural sway, including average sway speed, did not correlate with 
prospective fall rates in the ensuing twelve-month follow-up period. We contend that the inability of traditional 
postural sway metrics to predict future falls may be due to the insensitivity of these metrics to the complex nature 
of the postural control system.

The regulation of one’s standing postural sway requires the integration of numerous sensory inputs, spinal and 
supraspinal circuits, a host of cognitive functions and the peripheral neuromuscular system, all operating over 
different time scales8. Consequently, this control system is inherently non-linear. Characteristic of a non-linear 
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system, the relationship between these inputs and related muscular outputs is continuously modulated over time; 
the system dynamically “re-weights” the relative influence of each type of feedback on postural muscle activation 
in order to optimize performance in a given situation9, 10. Similarly, the amount of joint torque created by a given 
muscular contraction is dependent upon joint stiffness, which is also continuously modulated via changes in 
muscular tone11. As a result of these and other inter-related and ever-changing control strategies, the seemingly 
spontaneous fluctuations of postural sway are actually “complex,” meaning that they contain a degree of corre-
lated, fractal-like patterns that exhibit self-similar structures across multiple scales of time and/or space12–15. A 
previous study has demonstrated that the degree of postural sway complexity is largely independent of tradi-
tional sway metrics such as average sway speed or area over time16. We therefore hypothesized that as opposed 
to traditional metrics, those metrics aimed at capturing the physiologic “complexity” of postural sway will more 
accurately reflect the integrity of the postural control system and thus, better identify those at risk of suffering 
falls in the future.

In this study, we conducted a secondary analysis of longitudinal data from the population-based MOBILIZE 
Boston Study17 to determine the relationship between postural sway and future falls in community-dwelling older 
adults. Here, we chose to quantify the degree of postural sway complexity during single- and dual-task standing 
using a technique called multiscale entropy (MSE)18. MSE is one of numerous non-linear time-series analyti-
cal techniques that have been used to estimate postural sway complexity19. This approach quantifies the degree 
of re-occurrence of repetitive patterns within sway fluctuations. However, as opposed to traditional entropy 
analyses that are limited to one single time scale (e.g., approximate entropy or sample entropy), MSE utilizes a 
“coarse-graining” technique to estimate the degree of entropy contained within the time series across multiple 
scales of time. We specifically hypothesized that that those with lower MSE-derived complexity of postural sway 
during single or dual task standing at baseline would suffer more falls in the future.

Results
765 participants completed baseline tests of postural sway and the Short Physical Performance Battery test 
(SPPB). 738 of these individuals completed 48 consecutive months of falls tracking. Analyses were limited to 
these 738 participants. Baseline clinical and functional characteristics of fallers (i.e., those who fell at least once in 
48 months) and non-fallers in this cohort are listed in Table 1. The self-reported historical falls rate was higher in 
fallers than non-fallers (p < 0.001), while all other health characteristics were similar between those who did and 
did not fall during the study period.

When comparing the postural sway metrics, fallers exhibited lower postural sway complexity in both ST and 
DT conditions (p < 0.007) at baseline than non-fallers, while the traditional parameters (i.e., sway speed, sway 
area and anterioposterior (AP) path length) or SPPB score did not differ between fallers and non-fallers.

Relationship between baseline standing postural sway and future falls.  Figure 1 shows the AP 
COP time-series during ST from a recurrent faller (A) and a non-faller (B), along with the MSE curves generated 

Total participants Fallers (n = 460)
Non-fallers 
(n = 278) p-value*

Age (years), 
Mean ± SD 78.1 ± 5.4 78.2 ± 5.5 77.9 ± 5.3 0.43

Female, n (%) 470 (64) 292 (63) 178 (64) 0.79

BMI, Mean ± SD 27.3 ± 5.1 27.3 ± 4.9 27.4 ± 5.4 0.64

Education (years), 
Mean ± SD 14.2 ± 3.1 15.0 ± 4.8 14.6 ± 7.7 0.11

Comorbidity, 
Mean ± SD 3.0 ± 1.6 3.1 ± 1.6 2.9 ± 1.6 0.32

SPPB, Mean ± SD 9.3 ± 2.5 9.3 ± 2.6 9.4 ± 2.4 0.48

Historical falls rate 0.7 ± 1.3 0.9 ± 1.5 0.3 ± 0.7 <0.001

Sway speed (mm/s), Mean ± SD

 ST 19.1 ± 4.9 19.3 ± 4.9 18.9 ± 4.8 0.39

 DT 21.5 ± 6.9 21.7 ± 7.4 21.3 ± 6.1 0.43

Sway area (mm2/s), Mean ± SD

 ST 183.3 ± 140.7 191.1 ± 156.3 170.5 ± 109.2 0.24

 DT 236.4 ± 217.6 248.0 ± 240.3 217.1 ± 172.2 0.29

AP path length (mm), Mean ± SD

 ST 447.1 ± 124.6 448.9 ± 123.0 443.9 ± 127.4 0.59

 DT 506.8 ± 179.1 509.7 ± 191.0 502.1 ± 157.5 0.58

Complexity, Mean ± SD

 ST 31.2 ± 6.3 30.7 ± 6.4 31.9 ± 6.2 0.007

 DT 31.0 ± 7.5 30.4 ± 7.6 32.1 ± 7.3 0.002

Table 1.  Demographics of fallers and non-fallers. *ANOVAs and Chi-Square test (for sex) were used to 
determine the differences in these characteristics between fallers and non-fallers. Note: BMI = body mass index; 
ST = single task standing; DT = dual task standing; AP = anterioposterior.
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from each time-series (C). As compared to the non-faller, the sample entropy of the current faller was lower 
across multiple scales of time. As such, postural sway complexity (i.e., the area under the MSE curve) of the par-
ticipant who experienced falls was considerably less than the participant who did not. In contrast, other metrics 
of postural sway, including sway speed, sway area and AP path length, were quite similar between these two study 
participants.

The associations between baseline postural sway metrics (i.e., complexity, sway speed, sway area, and AP path 
length) and the rate of future falls were analyzed using negative binomial regression analyses. Results indicated 
that the complexity of postural sway during ST (incident rate ratio (IRR) = 0.98, p = 0.02, 5% Confidence Limits 
(CL): 0.96–0.99) and DT (IRR = 0.98, p = 0.02, 95% CL: 0.97–0.99) was negatively associated with future falls rate 
(Table 2); one unit difference of either single or dual task postural sway complexity associated with 2% difference 
in future falls rate. In other words, participants with lower baseline postural sway complexity had a higher rate of 
future falls. These relationships were independent of age, sex, BMI and historical falls. Conversely, SPPB score or 
traditional postural sway measures (i.e., sway speed, area, and AP path length) did not significantly predicted the 
incidence of future falls (IRRs = 1~1.01, p > 0.49).

Incident rate ratio of future falls in postural sway complexity quintiles.  We also divided the cohort 
into quintiles of postural sway complexity, separately for both ST and DT conditions (Table 3). Participants in the 
“low-complexity” quintiles were younger those in than “high-complexity” quintiles (p < 0.001) (Table 4). Other 
health characteristics were similar between quintiles. The lower quintiles suffered higher rates of falls (p < 0.03). 
Post-hoc analyses revealed that: 1) older adults in Quintile 1 of complexity during ST had a significantly higher 

Figure 1.  Illustrative anterioposterior (AP) postural sway time-series of a recurrent faller (A) and a non-faller 
(B) during single task quiet standing along with multiscale entropy (MSE) curves generated from each time-
series (C). To quantify the different postural sway dynamics of the time series in A and B, sample entropy was 
calculated and plotted as a function of time scales (ranging from scale 1 to 40) for each time-series. Postural 
sway complexity was defined as the area under the multiscale entropy curve, as illustrated by gray shading under 
the curve of the recurrent faller. When compared to the non-faller, sample entropy of this recurrent faller was 
lower across multiple time scales. Postural sway complexity (i.e., area under the multiscale entropy curve) of this 
recurrent faller (complexity = 27.5 units) was nearly half that of the non-faller (complexity = 52.8 units) while 
other postural sway metrics (i.e., sway speed, area and AP path length) of the two participants were similar 
(listed on the top of A and B).

Total falls rate

IRR p-value 95% CL

Sway speed
ST 1.01 0.49 0.99 1.03

DT 1 0.87 0.99 1.02

Sway area
ST 1 0.92 1 1.001

DT 1 0.82 1 1.001

AP path 
length

ST 1 0.94 1 1.001

DT 1 0.89 1 1.002

SPPB 1.01 0.76 0.96 1.05

Postural sway 
complexity

ST 0.98 0.02 0.96 0.99

DT 0.98 0.02 0.97 0.99

Table 2.  Relationship between baseline metrics and the rate of future falls#. #The negative binomial regression 
analyses were adjusted for age, sex, BMI and historical falls rate. Note: ST = single task standing; DT = dual task 
standing; AP = anterioposterior; IRR = incident rate ratio; 95% CL: 95% Confidence Limits.
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falls rate than those in Quintiles 4 and 5 (p < 0.01); and 2) those in Quintiles 1, 2 and 3 of complexity during DT 
had higher falls rate than those in Quintiles 4 and 5 (p < 0.04).

Negative binomial regression analyses further indicated that as compared to the highest quintile of complexity 
(Quintile 5) derived from the ST condition, older adults in the lowest quintile of complexity (Quintile 1) exhibited 
a (non-significant) trend towards a higher rate of future falls (Table 5, IRR = 1.30, p = 0.07, 95% CL: 0.97–1.75). 
Notably, older adults in the lower quintiles of complexity (Quintile 1, 2 and 3) derived from the DT condition, 
however, experienced 42–48% more falls during the follow-up (Table 5, IRRs = 1.42~1.48, p < 0.03, 95% CLs: 
1.04–1.99).

Discussion
Falls are a major health concern for older adults because they often result in fractures, hospitalization, dimin-
ished mobility, and even death20, 21. Our results from a large cohort of community-dwelling older adults indicate 
that the multi-scale physiologic complexity of standing postural sway predicts falls in community-dwelling older 
adults, even after adjusting for age, BMI, sex, and the historical self-reported falls rate. In general, we observed 

ST postural sway 
complexity

DT postural sway 
complexity

Mean ± SD Range Mean ± SD Range

Quintile 1 23.1 ± 2.5 14.8 26.2 21.3 ± 2.6 12.6 24.5

Quintile 2 27.6 ± 0.8 26.2 28.9 26.7 ± 1.2 24.5 28.6

Quintile 3 30.6 ± 1.0 28.9 32.2 30.5 ± 1.1 28.6 32.3

Quintile 4 33.9 ± 1.0 32.2 35.8 34.3 ± 1.3 32.3 37.1

Quintile 5 40.7 ± 3.9 35.7 53.2 42.3 ± 4.5 37.1 59.1

Table 3.  Postural sway complexity quintiles. Note: ST = single task standing; DT = dual task standing.

Age 
(years), 
Mean ± SD

BMI, 
Mean ± SD

Female, 
n (%)

Education 
(years), 
Mean ± SD

Comorbidity, 
Mean ± SD

Falls rate#, 
Mean ± SD

Single 
task 
standing

Quintile 1 77.8 ± 5.6A 27.6 ± 5.0 97 (66) 14.1 ± 3.5 3.0 ± 1.7 2.6 ± 3.6A

Quintile 2 77.0 ± 4.9A 27.4 ± 4.8 99 (67) 14.6 ± 2.9 3.2 ± 1.6 2.1 ± 3.0AB

Quintile 3 77.9 ± 5.7AB 26.8 ± 5.2 93 (63) 14.3 ± 2.9 3.0 ± 1.6 2.2 ± 2.8AB

Quintile 4 78.3 ± 5.3AB 27.4 ± 5.1 97 (66) 14.3 ± 3.2 2.9 ± 1.5 1.8 ± 2.5B

Quintile 5 79.6 ± 5.2C 27.4 ± 5.5 84 (57) 14.1 ± 2.9 3.1 ± 1.6 1.7 ± 2.4B

p-value* 0.001** 0.69 0.39 0.79 0.65 0.03**

Dual 
task 
standing

Quintile 1 77.6 ± 5.7A 27.4 ± 4.6 98 (67) 14.1 ± 3.3 2.8 ± 1.7 2.4 ± 2.9A

Quintile 2 76.9 ± 5.2AB 27.2 ± 5.1 103 (69) 14.2 ± 3.1 2.9 ± 1.4 2.5 ± 3.7AB

Quintile 3 77.4 ± 5.1A 27.5 ± 4.9 90 (62) 14.6 ± 3.1 3.2 ± 1.7 2.1 ± 2.9AB

Quintile 4 78.7 ± 5.4AC 27.5 ± 5.9 92 (62) 14.3 ± 2.9 3.3 ± 1.6 1.8 ± 2.5BC

Quintile 5 80.2 ± 5.1C 27.0 ± 5.0 87 (59) 14.2 ± 3.0 2.9 ± 1.5 1.4 ± 2.0C

p-value* <0.0001** 0.94 0.37 0.65 0.07 0.009**

Table 4.  Descriptive characteristics of participants in quintiles of postural sway complexity. #Falls were tracked 
for 48 months by using self-reported calendar. *ANOVAs and Student’s t post-hoc tests were used to determine 
the differences in these characteristics between quintiles. Within each column in ST and DT conditions, mean 
values with different superscript letters (A, B, or C) are significantly different from one another as determined 
by Student’s t post-hoc tests, P < 0.05.Note: BMI = body mass index.

Complexity in ST Complexity in DT

IRR p-value 95% CL IRR p-value 95% CL

Quintile 1 1.30 0.07 0.97 1.75 1.48 0.01 1.09 1.99

Quintile 2 1.14 0.41 0.84 1.54 1.42 0.03 1.04 1.93

Quintile 3 1.13 0.43 0.83 1.53 1.44 0.02 1.06 1.97

Quintile 4 0.92 0.57 0.67 1.25 1.34 0.06 0.98 1.83

Quintile 5 Reference

Table 5.  Relationship between postural sway complexity quintiles and the rate of future falls#. #The negative 
binomial regression analyses were adjusted for age, sex, BMI and historical falls rate. Quintile 5 was set as the 
reference quintile. Note: ST = single task standing; DT = dual task standing; IRR = incident rate ratio; 95% CL: 
95% Confidence Limits.
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that older adults with lower baseline complexity of AP postural sway when standing quietly or while performing 
a cognitive task, demonstrated higher fall rates over the ensuing 48 months. In contrast, commonly-used tra-
ditional metrics of postural sway, including sway speed, area and path length, or the physical function test (i.e., 
SPPB) were not predictive of future falls. Taken together, these results suggest that the MSE-derived complexity of 
standing postural sway provides unique insight into the complex nature of the postural control system that may 
be utilized to help identify those older adults who are more likely to fall in the future.

The behavior of a given physiological system is controlled by numerous inputs and regulatory elements that 
interact with one another on multiple scales of time and space22. The “complexity theory of aging” states that 
age-related alterations in the quantity and/or quality of these components, as well as to their structural and func-
tional connectivity, reduce system functionality and impair an organism’s ability to adapt to stress. Importantly, 
mounting evidence across numerous physiological systems suggests that these changes also manifest in a 
reduction of the complexity contained within the dynamics of the system’s behavior or output under basal or 
“free-running” conditions23–26.

In line with this theory, lower complexity of standing postural sway has been linked to diminished quantity 
and/or quality of sensory “input” to the postural control system16. Manor et al.16 demonstrated that older adults 
with reduced ability to detect light pressures applied to the foot soles, or those with reduced visual acuity, had 
lower standing postural sway complexity as compared to their age-matched counterparts with intact sensory 
function. Moreover, those older adults with deficits in both sensory systems exhibited even lower sway complex-
ity. Separate studies have also linked lower postural sway complexity to diminished capacity to adapt to stressors, 
as indicated by frailty27 and falls history28. Here, we have provided first-of-its-kind, prospective evidence that 
lower postural sway complexity at baseline is also independently associated with higher rates of future falls over 
a four-year follow up period.

In contrast to postural sway complexity, traditional metrics related to the average speed or magnitude of sway 
fluctuations did not predict future falls. The majority of balance-related falls stem from complex, multi-scale 
interactions between the individual, the environment, and the tasks being completed29. As such, traditional pos-
tural sway metrics, which reflect the dynamics or behavior of standing postural control on only a single scale of 
time, may not fully capture a person’s ability to adapt to the stressors of daily life and ultimately, avoid falls. This 
notion is supported by Fernie et al.5, who similarly reported that average standing postural sway speed did not 
correlate with the frequency of future falls in 205 older adults aged 80 years and above. This inability of traditional 
sway metrics to predict falls may stem from the idea that the dynamic characteristics of a healthy postural control 
states are not simply reflected as less or reduced sway variability30. To this end, Tai Chi training, for example, has 
been shown to improve mobility in multiple populations, and at the same time, increase the speed of postural 
sway fluctuations during standing31–33.

In the current study, those who fell during the follow-up period had lower baseline postural sway complexity, 
within both ST and DT conditions, as compared to those who did not suffer a fall. Interestingly, within the subset 
of the cohort that fell at least once, we observed that 1) average sway complexity was similar across ST and DT 
conditions, yet 2) the degree of postural sway complexity specifically derived from DT trials appeared to be a 
better predictor of the incidence of future falls. Negative binomial regression models demonstrated that partic-
ipants within the lowest quintile of DT postural sway complexity, as compared to the highest quintile, suffered 
48% more falls during the follow-up period. In contrast, there was only a marginal increase in future falls rate in 
the lowest quintile of ST postural sway complexity as compared to the highest quintile. The particular sensitivity 
of DT postural sway complexity to future falls may stem from the notion that the DT test condition more closely 
mimics typical situations in which falls occur; namely, when older adults are standing or walking and attempt to 
execute concurrent tasks such as speaking to others, reading or problem-solving34–36.

The current observation that those with higher postural sway complexity at baseline have lower incidence 
of future falls suggests that fall prevention strategies may be optimized by targeting the complex dynamics of 
postural control. Several studies suggest that loss of complexity is not an obligatory consequence of aging, but 
instead, can be optimized with appropriate intervention37. These interventions have been aimed at 1) augmenting 
the quantity and/or quality of a specific input to the postural control system, or 2) simultaneously enhancing 
multiple functional components of the system37. For example, Zhou et al.38 recently demonstrated that a shoe 
insole system, delivering sub-sensory vibrations to the foot soles, and thereby increasing the “input” to the pos-
tural control system, increased postural sway complexity by an average of 11% in a small cohort of healthy older 
adults. Moreover, this increase in postural sway complexity significantly correlated with improvement in mobility 
as measured by Timed-up-and-go test38. On the other hand, Tai Chi training is a multifaceted intervention that 
enhances multiple elements of the postural control system (e.g., lower extremities strength39, cardiorespiratory 
fitness40, and cognitive function41). Moreover, it has also been shown to significantly augment the complexity 
of standing postural sway in both healthy older adults42 and those suffering from peripheral neuropathy43, and 
reduce the risk of falling44.

In this study, falls were defined as any unintentional event in which the body came to rest on the ground or 
other lower level. Future work is therefore needed to determine if MSE-derived postural sway complexity can 
predict more specific types of falls, such as those that occur indoors or result in injury or hospitalization45. As 
the complexity in the current study is quantified using MSE only in AP postural sway due to the lack of enough 
signal to noise ratio in the time-series of ML direction, future studies are also needed to examine the functional 
importance of postural sway complexity within the ML direction. It is also of note that our current results may 
seem inconsistent with previous studies reporting that biological aging or disease is linked to relatively greater 
physiologic “complexity”46, 47. Khandoker et al.47, for example, reported that the complexity of minimum foot 
clearance time series during walking, as quantified using approximate entropy48 on a single time scale, was higher 
in fallers as compared to non-fallers. We know that physiological systems, including the postural control system, 
are regulated by numerous functional components that act across multiple tempo-spatial scales. As such, for a 
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given physiologic time-series, estimates of “complexity” derived from single scales may be disparate from those 
derived and averaged across multiple scales. Costa et al.49 reported that the single-scale entropy (Scale 1) of heart 
beat time-series was significantly lower in healthy individuals as compared to those with atrial fibrillation (AF). 
On the other hand, when entropy was averaged across multiple scales, it was much lower in those with AF as 
compared to their healthy counterparts. This suggests that the dynamics of physiologic systems are dependent 
upon the measured temporal or spatial scale. Future research should therefore apply and compare these and other 
analytical techniques (e.g., detrended fluctuation analysis50) to more fully characterized postural sway dynamics. 
Nevertheless, the present observations indicate that multiscale complexity of standing postural sway, particularly 
under DT conditions, may aid in the clinical prediction of future falls in older adults. Moreover, fall-prevention 
strategies specifically designed to restore and enhance physiological complexity may be particularly beneficial 
within this population.

Methods
Participants.  This secondary analysis was completed using data from the population-based MOBILIZE 
Boston Study (MBS), which aims to investigate and identify novel risk factors for falls in older adults. A complete 
description of the MBS study has been reported previously17, 51. Briefly, community-dwelling older adults aged 70 
years and older who were able to walk 20 feet without personal assistance (walking aids permitted) were included. 
Those with terminal disease, severe vision or hearing deficits, or diminished cognitive function (i.e., Mini Mental 
State Examination score ≤18) were excluded. All the experimental methods and protocols were approved by the 
Hebrew SeniorLife Institutional Review Board (HSL IRB) and carried out in accordance with relevant guidelines. 
All participants provided written informed consent as approved by the HSL IRB.

At baseline, 765 eligible participants completed a home interview and were assessed for demographic, clinical 
and functional characteristics, including standing postural control and the Short Physical Performance Battery 
test (SPPB). Historical falls rate, that is, the self-reported number of falls suffered within the year prior to the 
baseline assessment, was also recorded.

Falls were then tracked for 48 months using monthly falls calendars and follow-up interviews. Those with 
incomplete falls tracking data for the entire 48 months (n = 27) were excluded from analyses.

Assessment of standing postural control.  Standing postural control was assessed by measuring postural 
sway (i.e., center-of-pressure, COP) fluctuations at 240 Hz with a force plate (type 9286AA, Kistler, Amherst, NY). 
Participants stood barefoot with feet shoulder-width apart on the force plate, which was placed with its mediolat-
eral axis parallel to the laboratory wall. Tissue paper was placed on the force plate and chalk outlines of each foot 
were recorded prior to the first trial. The outline of each participant was then used throughout his/her assessment 
to ensure consistent foot placement across trials.

Each participant completed five, 30-second trials under two conditions: quiet standing with eyes open (i.e., 
single task standing, ST) and standing while performing an additional cognitive task (i.e., dual task standing, 
DT). Trial order was randomized and one minute of rest was given between each trial. In dual task standing trials, 
participants performed verbalized serial subtractions of three beginning at the number 500. If participants made 
five or more errors in a single trial, the test was switched to counting backwards by five from 500. In each subse-
quent trial, participants were asked to continue subtracting from the final number reached in the previous trial.

As previously reported, the signal-to-noise ratio (SNR) of the force plate in the laboratory was examined by 
comparing the COP signals recorded from a static 50 lb (22.7 kg) weight and a healthy participant26. We found 
that the SNR of the COP fluctuations in the anterioposterior (AP) direction was larger than 10 while in mediolat-
eral (ML) direction it was smaller than 1. Therefore, we focused the current analysis of postural sway complexity 
on the COP time series in AP direction only (see Fig. 1).

The complexity metric was computed using MSE. Prior to calculation of MSE, empirical mode decomposi-
tion (EMD) was used to remove low-frequency trends and high-frequency noise in the raw time series, which 
was well-established previously19. Specifically, fluctuations at frequencies over 20 Hz were removed, as they are 
unlikely to reflect physiologically meaningful control processes. Fluctuations at frequencies less than 0.2 Hz were 
also removed, so as to ensure that a sufficient number of dynamic patterns occurred within the length of COP 
time series19.

EMD-filtered time series were “coarse-grained” on different scales of time to capture system dynamics. This 
procedure divided the time-series into non-overlapping windows of length equaling a scale factor, τ, ranging 
from 1 to 40 data points in this study. Thus, the coarse-grained series at the largest scale had 180 data points 
(i.e., 7200 points/40), which meets standard practice for obtaining reliable estimates of sample entropy18. Sample 
entropy is defined by the negative natural logarithm of the conditional probability that a time-series, having 
repeated itself within a tolerance r for m points (pattern length), will also repeat itself for m + 1 points without 
self-matches. The sample entropy of each coarse-grained time-series in this study was computed by choosing 
m = 2 and r = 15%19. Figure 1C showed the MSE curves generated by plotting sample entropy as a function of 
time scale from the two COP time-series presented in Fig. 1A and B. Finally, the postural sway complexity metric 
was identified as the area under the MSE curve (See Fig. 1C, “shaded region”). A larger area reflects higher sample 
entropy values over multiple time scales and thus, greater complexity.

In addition to postural sway complexity, several traditional measures of postural sway were computed to 
enable the comparison of their relationship to future falls. These measures included average sway speed (i.e., 
COP distance traveled in one trial divided by duration of the trial), sway area (i.e., the area of a confidence ellipse 
enclosing 95% of the COP fluctuation) and AP path length (total COP distance traveled in the AP direction). 
Since only AP MSE was used, we included AP path length to provide an additional comparison of sway in this 
specific direction.
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Assessment of falls.  A fall was defined as unintentionally coming to rest on the ground or other lower level, 
not as a result of an overwhelming external hazard or a major intrinsic event. Any fall episodes not classified 
using this definition were reviewed by an adjudication panel52. Falls were tracked for 48 months using monthly 
post-card calendars. Participants were instructed to record the actual date when they experienced a fall on the 
calendar and to mail their calendars to the study center at the end of each month. Those who failed to return the 
calendars were contacted and interviewed by telephone to collect information on their falls. If a fall was reported 
on the calendar, a structured telephone interview was conducted to clarify the details of the reported falls, includ-
ing the circumstances and location of the fall, whether the fall caused injury, etc.

Statistical analysis.  Analyses were performed with SAS 9.4 and JMP Pro 12 software (SAS Institute, Cary 
NC). Means, standard deviations (S.D.) and percentages of selected descriptive characteristics were calculated for 
the study sample. The Chi-Square test was used to identify the difference in dichotomous baseline variables (e.g., 
sex) and ANOVAs were used to determine the difference in continuous baseline characteristics between fallers 
and non-fallers.

Negative binomial regression was used to model the association between the baseline postural sway metrics 
(i.e., complexity, sway speed, sway area and AP path length) during ST or DT conditions, SPPB scores and future 
fall rates tracked over 48 months. Covariates for all negative binomial models included age, sex, body mass index 
(BMI) and historical falls rate.

Additionally, we created quintiles of the continuous postural sway complexity metric separately for ST and DT. 
ANOVAs and Student’s t tests were first performed to determine if selected health characteristics differed between 
these quintiles (Chi-Square test was used to identify the difference in sex). Negative binomial regression was then 
used to compare the rate of future falls between different quintiles of postural sway complexity. The quintile of 
highest postural sway complexity was set as the reference group. Covariates for these models similarly included 
age, sex, BMI and historical falls rate.

The incident rate ratio (IRR) and 95% confidence intervals (95% CI) were obtained from all the negative bino-
mial models and the significance level for all analyses was set to p < 0.05.
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